This major breakthrough could end PC overheating worries for good


Silicon might be the de facto standard for today’s computing, but it might be due for a change if new research from MIT, the University of Houston, and other institutions is to be believed.
Cubic boron arsenide, a chemical compound cooked up from a combination of boron and arsenic, could apparently be a better semiconductor, bypassing some of the weaknesses of silicon when it comes to heat sensitivity.
In fact, according to research published in Science (opens in new tab), Cubic boron arsenide has the “third-best thermal conductivity of any material — next to diamond and isotopically enriched cubic boron nitride”.
Is this the future?
The research said that more work would be needed to determine whether cubic boron arsenide can be “made in a practical, economical form, much less replace the ubiquitous silicon”.
But even in the near future, the material could find “some uses where its unique properties would make a significant difference” according to the researchers.
That being said, the research outlined the vast potential that the compound has.
Cubic boron arsenide is apparently much more accommodating to “holes” — electrons’ positively charged counterparts.
The lower heat sensitivity of cubic boron could also make a huge difference.
“Heat is now a major bottleneck for many electronics,” said MIT postdoc Jungwoo Shin who co-authored the paper. “Silicon carbide is replacing silicon for power electronics in major EV industries including Tesla, since it has three times higher thermal conductivity than silicon despite its lower electrical mobilities”.
“Imagine what boron arsenides can achieve, with 10 times higher thermal conductivity and much higher mobility than silicon. It can be a game changer.”
It’s not just cubic boron arsenide that is threatening to overtake silicon one day.
Researchers from the University of Illinois built 4-bit and 8-bit processors entirely out of plastic, which apparently had an 81% success rate, at least for the 4-bit models.
READ MORE:
It’s important to note that silicon never really had a monopoly in the world of semiconductors anyway.
Gallium arsenide, built from gallium and arsenic, is widely used in lasers as an alternative to silicon.
Via MIT News (opens in new tab)
Audio player loading… Silicon might be the de facto standard for today’s computing, but it might be due for a change if new research from MIT, the University of Houston, and other institutions is to be believed. Cubic boron arsenide, a chemical compound cooked up from a combination of boron…
Recent Posts
- There’s Nothing left to hide as leaked videos reveal the Phone 3A in full
- North Korean hackers are posing as software development recruiters to target freelancers
- The Morning After: Apple reveals its new cheapest iPhone. What’s missing?
- HP is apparently forcing customer support callers to wait 15 minutes before talking to anyone
- IBM return-to-office scheme is reportedly targeting older workers
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010