This laser technology could save the planet and help AI industry claw back more than $100 billion — half of GPUs are ‘wasted’ because of limited bandwidth, and this US startup wants to change that


Bandwidth limitations have become a significant bottleneck in AI and high-performance computing (HPC), as GPUs are underutilized due to bandwidth constraints, with nearly half of their computational power going to waste.
Nvidia is not expected to release optical interconnects for its NVLink protocol until the “Rubin Ultra” GPU compute engine launches in 2027.
This delay has led hyperscalers and cloud builders to explore ways to leapfrog Nvidia’s technology by adopting optical interconnects earlier.
Introducing ChromX
Xscape Photonics, an optical interconnect company spun out of research at Columbia University, is using photonics to realize scalable, high-bandwidth, energy-sustainable, and cost-effective solutions to enable the next generation of AI, ML, and simulation hardware.
This could help the AI industry save billions of dollars in wasted GPU capacity while also offering a path to greener, more sustainable AI infrastructures.
The Next Platform recently took a closer look at Xscape Photonics and spoke with the team behind it, including CEO Vivek Raghunathan, a former MIT researcher and Intel engineer.
Raghunathan highlighted the inefficiencies of current GPU systems, explaining that as scaling continues, the problem shifts “from GPU device-level performance to a system-level networking problem.”
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
This is where Xscape’s technology comes into play. By converting electrical signals into optical ones directly within the GPU, Xscape can dramatically increase bandwidth while simultaneously reducing power consumption.
The startup’s solution, called the “ChromX” platform, uses a laser that can transmit multiple wavelengths of light simultaneously through a single optical fiber – up to 128 different wavelengths (or “colors”). This enables a 32-fold increase in bandwidth compared to lasers that use only four wavelengths.
The ChromX platform also relies on simpler modulation schemes like NRZ (Non-Return-to-Zero), which reduce latency compared to higher-order schemes like PAM-4 used in other systems such as InfiniBand and Ethernet. The ChromX platform is programmable, allowing it to adjust the number of wavelengths to match the specific needs of an AI workload, whether for training or inference tasks.
Raghunathan told The Next Platform’s Timothy Prickett Morgan, “The vision is to match in-package communication bandwidth to off-package communication escape bandwidth. And we think when we use our multicolor approach, we can match that so that giant datacenters – or multiple datacenters – behave as one big GPU.”
The potential impact of this technology is enormous. AI workloads consume vast amounts of energy, and with data center demand projected to triple by 2035, power grids may struggle to keep up. Xscape Photonics’ innovations could offer a vital solution, enabling AI systems to operate more efficiently and sustainably.
More from TechRadar Pro
Bandwidth limitations have become a significant bottleneck in AI and high-performance computing (HPC), as GPUs are underutilized due to bandwidth constraints, with nearly half of their computational power going to waste. Nvidia is not expected to release optical interconnects for its NVLink protocol until the “Rubin Ultra” GPU compute engine…
Recent Posts
- I tried this new online AI agent, and I can’t believe how good Convergence AI’s Proxy 1.0 is at completing multiple online tasks simultaneously
- I cannot describe how strange Elon Musk’s CPAC appearance was
- Over a million clinical records exposed in data breach
- Rabbit AI’s new tool can control your Android phone, but I’m not sure how I feel about letting it control my smartphone
- Rabbit AI’s new tool can control your Android phones, but I’m not sure how I feel about letting it control my smartphone
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010