The future of deep-reinforcement learning, our contemporary AI superhero


Rish Joshi Contributor
Rish is an entrepreneur and investor. Previously, he was a VC at Gradient Ventures (Google’s AI fund), co-founded a fintech startup building an analytics platform for SEC filings and worked on deep-learning research as a graduate student in computer science at MIT.
It was not long ago that the world watched World Chess Champion Garry Kasparov lose a decisive match against a supercomputer. IBM’s Deep Blue embodied the state of the art in the late 1990s, when a machine defeating a world (human) champion at a complex game such as chess was still unheard of.
Fast-forward to today, and not only have supercomputers greatly surpassed Deep Blue in chess, they have managed to achieve superhuman performance in a string of other games, often much more complex than chess, ranging from Go to Dota to classic Atari titles.
Many of these games have been mastered just in the last five years, pointing to a pace of innovation much quicker than the two decades prior. Recently, Google released work on Agent57, which for the first time showcased superior performance over existing benchmarks across all 57 Atari 2600 games.
The class of AI algorithms underlying these feats — deep-reinforcement learning — has demonstrated the ability to learn at very high levels in constrained domains, such as the ones offered by games.
The exploits in gaming have provided valuable insights (for the research community) into what deep-reinforcement learning can and cannot do. Running these algorithms has required gargantuan compute power as well as fine-tuning of the neural networks involved in order to achieve the performance we’ve seen.
Researchers are pursuing new approaches such as multi-environment training and the use of language modeling to help enable learning across multiple domains, but there remains an open question of whether deep-reinforcement learning takes us closer to the mother lode — artificial general intelligence (AGI) — in any extensible way.
While the talk of AGI can get quite philosophical quickly, deep-reinforcement learning has already shown great performance in constrained environments, which has spurred its use in areas like robotics and healthcare, where problems often come with defined spaces and rules where the techniques can be effectively applied.
In robotics, it has shown promising results in using simulation environments to train robots for the real world. It has performed well in training real-world robots to perform tasks such as picking and how to walk. It’s being applied to a number of use cases in healthcare, such as personalized medicine, chronic care management, drug discovery and resource scheduling and allocation. Other areas that are seeing applications have included natural language processing, computer vision, algorithmic optimization and finance.
The research community is still early in fully understanding the potential of deep-reinforcement learning, but if we are to go by how well it has done in playing games in recent years, it’s likely we’ll be seeing even more interesting breakthroughs in other areas shortly.
So what is deep-reinforcement learning?
If you’ve ever navigated a corn maze, your brain at an abstract level has been using reinforcement learning to help you figure out the lay of the land by trial and error, ultimately leading you to find a way out.
Rish Joshi Contributor Rish is an entrepreneur and investor. Previously, he was a VC at Gradient Ventures (Google’s AI fund), co-founded a fintech startup building an analytics platform for SEC filings and worked on deep-learning research as a graduate student in computer science at MIT. It was not long ago…
Recent Posts
- Here’s when and where you can preorder the new iPhone 16E
- The Humane AI Pin debacle is a reminder that AI alone doesn’t make a compelling product
- This 1.9-pound smartphone’s massive battery offers six months of standby
- Movie sales – including 4K Blu-ray – fell again last year, but if you’re going streaming only, you’re massively missing out
- A new and dangerous keylogger is on the loose – here’s how to stay safe
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010