Teach AIs forgetfulness could make them better at their jobs

While modern machine learning systems act with a semblance of artificial intelligence, the truth is they don’t “understand” any of the data they work with — which in turn means they tend to store even trivial items forever. Facebook researchers have proposed structured forgetfulness as a way for AI to clear the decks a bit, improving their performance and inching that much closer to how a human mind works.
The researchers describe the problem by explaining how humans and AI agents might approach a similar problem.
Say there are ten doors of various colors. You’re asked to go through the yellow one, you do so and then a few minutes later have forgotten the colors of the other doors — because it was never important that two were red, one plaid, two walnut, etc, only that they weren’t yellow and that the one you chose was. Your brain discarded that information almost immediately.
But an AI might very well have kept the colors and locations of the other nine doors in its memory. That’s because it doesn’t understand the problem or the data intuitively — so it keeps all the information it used to make its decision.
This isn’t an issue when you’re talking about relatively small amounts of data, but machine learning algorithms, especially during training, now routinely handle millions of data points and ingest terabytes of imagery or language. And because they’re built to constantly compare new data with their accrued knowledge, failing to forget unimportant things means they’re bogged down by constant references to pointless or outdated data points.
The solution hit upon by Facebook researchers is essentially — and wouldn’t we all like to have this ability — to tell itself how long it needs to remember a piece of data when it evaluates it to begin with.
“Each individual memory is associated with a predicted expiration date, and the scale of the memory depends on the task,” explained Angela Fan, a Facebook AI researcher who worked on the Expire-Span paper. “The amount of time memories are held depends on the needs of the task—it can be for a few steps or until the task is complete.”
So in the case of the doors, the colors of the non-yellow doors are plenty important until you find the yellow one. At that point it’s safe to forget the rest, though of course depending on how many other doors need to be checked, the memory could be held for various amounts of time. (A more realistic example might be forgetting faces that aren’t the one the system is looking for, once it finds it.)
Analyzing a long piece of text, the memory of certain words or phrases might matter until the end of a sentence, a paragraph, or longer — it depends on whether the agent is trying to determine who’s speaking, what chapter the sentence belongs to, or what genre the story is.
This improves performance because at the end, there’s simply less information for the model to sort through. Because the system doesn’t know whether the other doors might be important, that information is kept ready at hand, increasing the size and decreasing the speed of the model.
Fan said the models trained using Expire-Span performed better and were more efficient, taking up less memory and compute time. That’s important during training and testing, which can take up thousands of hours of processing, meaning even a small improvement is considerable, but also at the end user level, where the same task takes less power and happens faster. Suddenly performing an operation on a photo makes sense to do live rather than after the fact.
Though being able to forget does in some ways bring AI processes closer to human cognition, it’s still nowhere near the intuitive and subtle ways our minds operate. Of course, being able to pick what to remember and how long is a major advantage over those of us for whom those parameters are chosen seemingly randomly.
While modern machine learning systems act with a semblance of artificial intelligence, the truth is they don’t “understand” any of the data they work with — which in turn means they tend to store even trivial items forever. Facebook researchers have proposed structured forgetfulness as a way for AI to…
Recent Posts
- This smart video lock unlocks with a wave of your hand
- Clues in Windows 11 suggest Microsoft has a nifty plan to help you move all your stuff from an old PC to a new computer more easily and conveniently
- NetEase Games has issued a statement on Marvel Rivals layoffs, citing ‘organizational reasons’
- The best webcams for 2025
- Your smartwatch could help predict when you’re about to get depressed, according to research
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010