Study: Wearable sensors more accurately track Parkinson’s disease progression than traditional observation

In a study from Oxford University, researchers found that by using a combination of wearable sensor data and machine learning algorithms the progression of Parkinson’s disease can be monitored more accurately than in traditional clinical observation. Monitoring movement data collected by sensor technology may not only improve predictions about disease progression but also allows for more precise diagnoses.
Parkinson’s disease is a neurological condition that affects motor control and movement. Although there is currently no cure, early intervention can help delay the progression of the disease in patients. Diagnosing and tracking the progression of Parkinson’s disease currently involves a neurologist using the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) to assess the patient’s motor symptoms by assigning scores to the performance of specific movements. However, because this is a subjective, human analysis, classification can be inaccurate.
In the Oxford study, 74 patients with Parkinson’s were monitored for disease progression over a period of 18 months. The participants wore wearables with sensors in different regions of the body: on the chest, at the base of the spine and on each wrist and foot. These sensors — which had gyroscopic and accelerometric capabilities — kept tabs on 122 different physiological measurements, and tracked the patients during walking and postural sway tests. Kinetic data was then analyzed by custom software programs using machine learning.
The sensor data collected by the wearables were compared to standard MDS-UPDRS assessments, which are considered the gold standard in current practice. That traditional test, in this study’s patients “did not capture any change” while the sensor-based analysis “detected a statistically significant progression of the motor symptoms” according to the researchers.
Having more precise data on the progression of Parkinson’s isn’t a cure, of course. But the incorporation of metrics from wearables could help researchers confirm the efficacy of novel treatment options.
This article originally appeared on Engadget at https://www.engadget.com/study-wearable-sensors-more-accurately-track-parkinsons-disease-progression-than-traditional-observation-171132495.html?src=rss
In a study from Oxford University, researchers found that by using a combination of wearable sensor data and machine learning algorithms the progression of Parkinson’s disease can be monitored more accurately than in traditional clinical observation. Monitoring movement data collected by sensor technology may not only improve predictions about disease…
Recent Posts
- Everything new on Apple TV+ in March 2025: Severance season 2 finale, Dope Thief, The Studio, and more
- Powerplay 2: Logitech made its magic mousepad cheaper instead of better
- Is your business primed to respond to downtime?
- AT&T Promo Code: Get a Gift Card Worth Up to $200
- Top digital loan firm security slip-up puts data of 36 million users at risk
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010