Preparing for the DNA computation paradigm shift


In “The Structure of Scientific Revolutions,” physicist and philosopher Thomas Kuhn introduced the concept of a paradigm shift, which he used to describe a fundamental change in the basic framework of thinking in natural sciences. Throughout history, however, such paradigm shifts have occurred not just in natural sciences but across the entire spectrum of human endeavor, providing solutions to problems that appeared to be insurmountable under the old paradigm.
The field of data storage and computation is a case in point. As the demand for creation, retention, and data computation only ever increased with time, the current computing paradigm requires enterprises to build data continuously centers the size of football fields and nuclear power plants to power them. Here, the lack of resources and capabilities to build these things quickly enough indefinitely is not as important as the fact that the current computing paradigm is not compatible with a scalable solution.
DNA-based data storage and computation represents a break from the old framework and shows a scalable, sustainable path forward. TechRadar reported on one company, Biomemory, that recently announced an offering for consumers to have messages stored in DNA and shipped to them on a credit card-sized card. The DNA Data Storage Alliance recently announced specifications on recommended approaches to store data in DNA.
CEO and co-founder, CATALOG.
The growing cost of AI
AI delivers innovation at a rate and pace the world has never experienced but comes at a substantial cost. AI generates volumes of data, and machine learning models are expensive to train and maintain.
Last summer, it was reported that it costs more than $700 million daily to keep OpenAI’s ChatGPT up and running. Recently, TechRadar reported that Sam Altman is seeking up to a whopping $7 trillion to build a facility to boost the industry’s ability to produce microprocessors to process AI workloads.
These exorbitant costs point to a limitation of the current computation paradigm.
While the advent of the microprocessor and its exponential development over the decades is largely responsible for the world as we know it today, the basic von Neumann architecture surrounding the microprocessor hasn’t changed much since World War II. And it is this architecture, this computing paradigm, that is increasingly becoming incompatible with the ever-increasing demand for data storage and computation.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
DNA computation: A paradigm shift
Our cells are DNA-based computers that come together to form our bodies, which collectively process trillions of operations in parallel with very little energy. Scientists have mimicked that and used synthetic DNA to store and compute digital data in laboratory settings.
Compared to existing microprocessor technologies, which process workloads serially, a significant benefit of DNA Computation platforms is the ability to use enzymes or DNA probes to compute in a massively parallel fashion.
Imagine mixing a container of blue liquid with a container of red liquid. The result of this computation –a new color—appears not by serially mixing each color molecule one at a time but by mixing all of them together in parallel. Just as in this thought experiment, computation is performed in a massively parallel manner directly on the data, without having to travel to memory or processor to be processed.
Potential DNA computation application areas
DNA-based computation has the potential to allow the generation of insights from data sets that are not currently possible with existing computers. Early application areas include search, signal processing, and machine learning.
One practical example is satellite imagery of the entire surface of the Earth. We’ll soon have decades’ worth of images taken every second of every day. Given the amount of data, a simple search using conventional technology could become prohibitively expensive, but with DNA, it could be as simple as a COVID test.
Other expected areas of early application are artificial intelligence, machine learning, data analytics, and secure computing. In addition, initial use cases are expected to include fraud detection in financial services, image processing for defect discovery in manufacturing, and digital signal processing in the energy sector.
Borrowing heavily from natural processes and cutting-edge synthetic biology tools, in addition to parallelization, automated and scalable DNA-based computation platforms are divorced from the limitations of traditional electronic systems. They leverage low energy, low physical footprint, and secure computing.
We’ve listed the best business cloud storage.
This article was produced as part of TechRadarPro’s Expert Insights channel where we feature the best and brightest minds in the technology industry today. The views expressed here are those of the author and are not necessarily those of TechRadarPro or Future plc. If you are interested in contributing find out more here: https://www.techradar.com/news/submit-your-story-to-techradar-pro
In “The Structure of Scientific Revolutions,” physicist and philosopher Thomas Kuhn introduced the concept of a paradigm shift, which he used to describe a fundamental change in the basic framework of thinking in natural sciences. Throughout history, however, such paradigm shifts have occurred not just in natural sciences but across…
Recent Posts
- Apple TV+ releases a gritty new crime drama trailer for Dope Thief that looks like a stylish version of The Wire
- The women who made America’s microchips and the children who paid for it
- Chinese hackers abuse Microsoft tool to get past antivirus and cause havoc
- Your Earbuds Are Gross. Here’s How to Clean Them Properly
- This smart video lock unlocks with a wave of your hand
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010