Only ‘limited by your imagination’: Gallium Nitride breakthrough could make LED displays more affordable and convert your smartphone screen into an antenna


Researchers at Cornell University, in collaboration with the Polish Academy of Sciences, have made a major breakthrough in semiconductor technology by developing the first-ever dual-sided chip – referred to as a “dualtronic” chip – that integrates both photonic and electronic devices on a single Gallium Nitride (GaN) wafer.
This innovation could shrink device sizes, improve energy efficiency, and reduce manufacturing costs.
The GaN wafer’s unique crystal structure is key to its dual functionality. Each side of the wafer has different properties, similar to how the poles of a magnet differ. The team utilized the metal-polar (Ga-polar) side to create light-emitting diodes (LEDs) and the nitrogen-polar (N-polar) side to construct high-electron mobility transistors (HEMTs). By doing so, they were able to achieve a configuration where the HEMT on one side powers the LED on the other – an accomplishment never before realized in any semiconductor material.
Limited only by the imagination
The research, led by Cornell professors Debdeep Jena and Huili Grace Xing, along with co-lead authors Len van Deurzen and Eungkyun Kim, has been published in the Nature journal.
“To our knowledge, nobody has made active devices on both sides, not even for silicon,” noted co-lead author Len van Deurzen, emphasizing how this feat was possible only because of GaN’s polarity-dependent properties. Traditional silicon wafers are cubic, making both sides nearly identical, which prevents such a design.
According to the researchers, this dualtronic approach could have immediate applications in making microLED displays more affordable and energy-efficient. By integrating photonic and electronic functions into a single chip, fewer components would be needed, leading to lower production costs and a smaller device footprint. This advancement could significantly impact display manufacturing, potentially making LED displays cheaper and more compact.
The technology’s potential goes even further. With the ability to use the same wafer for different functions, dualtronics could enable smartphone screens to be repurposed as antennas, supporting wireless communications directly through the display. The polarization properties of GaN and the dualtronic chip’s multifunctionality could transform not only displays but also radio frequency devices, lasers, and future 5G/6G technologies.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
“A good analogy is the iPhone,” explained Debdeep Jena. “It is, of course, a phone, but it is so many other things. It’s a calculator, it’s a map, it lets you check the internet. So there’s a bit of a convergence aspect of it. I would say our first demonstration of ‘dualtronics’ in this paper is convergence of maybe two or three functionalities, but really it’s bigger than that.”
This breakthrough could reshape how semiconductor devices are designed and utilized. By eliminating the need for separate chips to handle different functions, dualtronics promises to optimize both performance and resource utilization across a variety of technologies. As the researchers point out, this development marks a significant step forward, and the potential applications are “limited only by the imagination.”
More from TechRadar Pro
Researchers at Cornell University, in collaboration with the Polish Academy of Sciences, have made a major breakthrough in semiconductor technology by developing the first-ever dual-sided chip – referred to as a “dualtronic” chip – that integrates both photonic and electronic devices on a single Gallium Nitride (GaN) wafer. This innovation…
Recent Posts
- The Humane Ai Pin Will Become E-Waste Next Week
- iPhone 16e benchmarks point to performance, RAM, and charging speed details
- ICYMI: the week’s 8 biggest tech stories, from the iPhone 16e to Wi-Fi 7 routers and a crackdown on Kindle piracy
- The Handmaid’s Tale season 6: everything we know so far about the hit Hulu show’s return
- Nvidia confirms ‘rare’ RTX 5090 and 5070 Ti manufacturing issue
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010