Nanofabricated ‘tetrakaidecahedrons’ could out-bulletproof kevlar

Researchers at MIT and Caltech have created a nanoengineered material that could be tougher than the likes of kevlar or steel. Made of interconnected carbon “tetrakaidecahedrons,” the material absorbed the impact of microscopic bullets in spectacular fashion.
The study, led by MIT’s Carlos Portela, aimed to find out whether nanoarchitected materials — that is, designed and fabricated at the scale of nanometers — could be a viable path toward ultratough blast shields, body armor and other protective surfaces.
The idea of tetrakaidecahedron-based materials, however, isn’t a new one. The complex 14-sided class of polyhedron (there are about 1.5 billion possible variations) was proposed by Lord Kelvin in the 19th century as theoretically one of the most efficient possible for filling space with duplicates of itself.
If many such polyhedra can be packed into a small space and interconnected, Portela and his colleagues wondered, would they act as an efficient shock absorber? Such materials had been tested with slow deformations but not powerful impacts like you would expect from a bullet or micrometeoroid.
To find out, they assembled blocks of the material by means of nanolithography techniques, baking the resulting structure until it was pure carbon. Then they shot these carbon structures with 14-micron-wide silicon oxide bullets traveling well above the speed of sound (though at these scales, the comparison is a bit quaint).
The carbon structures, especially denser ones, absorbed the impact extremely well, stopping the particle dead — and crucially, deforming but not shattering.
“We show the material can absorb a lot of energy because of this shock compaction mechanism of struts at the nanoscale versus something that’s fully dense and monolithic, not nanoarchitected,” said Portela in a news release describing the discovery. “The same amount of mass of our material would be much more efficient at stopping a projectile than the same amount of mass of Kevlar.”
Interestingly, the researchers found they were able to model the impact and damage best by using methods generally used to describe meteors impacting a planet’s surface.
This is just an initial lab result, so soldiers won’t be wearing tetrakaidecahedronal flak jackets any time soon, but the experiment definitely shows the promise of this approach. If the team is able to find a way to manufacture the material at scale, it could be useful in all kinds of industries.
The study was published in the journal Nature Materials.
Researchers at MIT and Caltech have created a nanoengineered material that could be tougher than the likes of kevlar or steel. Made of interconnected carbon “tetrakaidecahedrons,” the material absorbed the impact of microscopic bullets in spectacular fashion. The study, led by MIT’s Carlos Portela, aimed to find out whether nanoarchitected…
Recent Posts
- The FTC is being hit by terminations
- Lenovo’s solar-powered Yoga concept laptop is such a good idea, I’m frankly shocked nobody’s done it already
- MWC 2025: Everything announced in Barcelona so far
- T-Mobile’s parent company is making an ‘AI Phone’ with Perplexity Assistant
- Microsoft names cybercriminals who created explicit deepfakes
Archives
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010