MIT’s new modular lunar robot has ‘worms’ for arms

MIT engineers have designed a walking lunar robot cleverly inspired by the animal kingdom. The “mix-and-match” system is made of worm-like robotic limbs astronauts could configure into various “species” of robots resembling spiders, elephants, goats and oxen. The team won the Best Paper Award last week at the Institute of Electrical and Electronics Engineers (IEEE) Aerospace Conference.
WORMS (Walking Oligomeric Robotic Mobility System) is one team’s vision of a future where astronauts living on a moon base delegate activities to robotic minions. However, to avoid “a zoo of machines” with various robots for every task imaginable, the modular WORMS would allow astronauts to swap out limbs, bases and appendages for the task at hand. For example, they could snap together a spider bot to crawl inside hazardous lava tubes to drill for frozen water or assemble an elephant-like pack robot to haul heavy equipment. They could even make a goat / ox combination to transport solar panels. And when they finish the task, they can disassemble it and return it to storage until it’s needed for something else.
The system includes a worm-like appendage, which can snap together with a chassis through a twist-and-lock mechanism. Wok-shaped “shoes” can then snap onto the appendage’s other end. Finally, a small tool allows astronauts to release the block’s spring-loaded pins when it’s time to disassemble. The team has already developed a six-legged prototype, about the size of a go-cart, using software that coordinates multiple worm limbs. They’ve successfully demonstrated assembly, disassembly and navigation in a recent field test.
“Astronauts could go into the shed, pick the WORMS they need, along with the right shoes, body, sensors and tools, and they could snap everything together, then disassemble it to make a new one,” said George Lordos, Ph.D. candidate and graduate instructor at MIT’s Department of Aeronautics and Astronautics. “The design is flexible, sustainable and cost-effective.”
The team spawned the idea in 2022 as their answer to NASA’s Breakthrough, Innovative and Game-changing (BIG) Idea Challenge, an annual competition for university students to conjure innovative ideas. In that year’s edition, NASA challenged students to develop robots to move across extreme terrain without wheels. The MIT team focused on a lunar robot that could navigate the moon’s South Pole, which some suspect could include frozen water — essential for astronauts’ long-term survival — but also complex terrain with thick dust, rocky slopes and lava tubes.
As the students brainstormed solutions, they drew inspiration from the animal kingdom. “As we were thinking of these animal inspirations, we realized that one of the simplest animals, the worm, makes similar movements as an arm, or a leg, or a backbone, or a tail,” says deputy team leader and AeroAstro graduate student Michael Brown. “And then the lightbulb went off: We could build all these animal-inspired robots using worm-like appendages.”
Although each WORMS appendage weighs about 20 pounds on Earth, they would be only about three pounds in the moon’s atmosphere, making it easy for astronauts to assemble, disassemble and reassemble them like a high-tech Lego set. The team is already working on a second-generation model with longer and slightly heavier appendages, with an eye on heavy-equipment hauling bots.
“There are many buzz words that are used to describe effective systems for future space exploration: modular, reconfigurable, adaptable, flexible, cross-cutting, et cetera,” said Kevin Kempton, an engineer at NASA’s Langley Research Center and judge of the 2022 BIG Idea Challenge. “The MIT WORMS concept incorporates all these qualities and more.”
This article originally appeared on Engadget at https://www.engadget.com/mits-new-modular-lunar-robot-has-worms-for-arms-175146649.html?src=rss
MIT engineers have designed a walking lunar robot cleverly inspired by the animal kingdom. The “mix-and-match” system is made of worm-like robotic limbs astronauts could configure into various “species” of robots resembling spiders, elephants, goats and oxen. The team won the Best Paper Award last week at the Institute of…
Recent Posts
- The government is still threatening to ‘semi-fire’ workers who don’t answer an email from Elon Musk
- Sigma’s latest camera is so minimalist it doesn’t have a memory card slot
- China ‘sinks’ 400 servers equivalent to 30,000 gaming PCs as it powers ahead with massive underwater data center project – but I wonder what GPU they use
- Can 18A save Intel from being devoured by its rivals – and Wall Street?
- SpaceX thinks it knows why Starship exploded on its last test flight
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010