Flexible expressions could lift 3D-generated faces out of the uncanny valley

3D-rendered faces are a big part of any major movie or game now, but the task of capturing and animating them in a natural way can be a tough one. Disney Research is working on ways to smooth out this process, among them a machine learning tool that makes it much easier to generate and manipulate 3D faces without dipping into the uncanny valley.
Of course this technology has come a long way from the wooden expressions and limited details of earlier days. High-resolution, convincing 3D faces can be animated quickly and well, but the subtleties of human expression are not just limitless in variety, they’re very easy to get wrong.
Think of how someone’s entire face changes when they smile — it’s different for everyone, but there are enough similarities that we fancy we can tell when someone is “really” smiling or just faking it. How can you achieve that level of detail in an artificial face?
Existing “linear” models simplify the subtlety of expression, making “happiness” or “anger” minutely adjustable, but at the cost of accuracy — they can’t express every possible face, but can easily result in impossible faces. Newer neural models learn complexity from watching the interconnectedness of expressions, but like other such models their workings are obscure and difficult to control, and perhaps not generalizable beyond the faces they learned from. They don’t enable the level of control an artist working on a movie or game needs, or result in faces that (humans are remarkably good at detecting this) are just off somehow.
[embedded content]
A team at Disney Research proposes a new model with the best of both worlds — what it calls a “semantic deep face model.” Without getting into the exact technical execution, the basic improvement is that it’s a neural model that learns how a facial expression affects the whole face, but is not specific to a single face — and moreover is nonlinear, allowing flexibility in how expressions interact with a face’s geometry and each other.
Think of it this way: A linear model lets you take an expression (a smile, or kiss, say) from 0-100 on any 3D face, but the results may be unrealistic. A neural model lets you take a learned expression from 0-100 realistically, but only on the face it learned it from. This model can take an expression from 0-100 smoothly on any 3D face. That’s something of an over-simplification, but you get the idea.
The results are powerful: You could generate a thousand faces with different shapes and tones, and then animate all of them with the same expressions without any extra work. Think how that could result in diverse CG crowds you can summon with a couple clicks, or characters in games that have realistic facial expressions regardless of whether they were hand-crafted or not.
It’s not a silver bullet, and it’s only part of a huge set of improvements artists and engineers are making in the various industries where this technology is employed — markerless face tracking, better skin deformation, realistic eye movements and dozens more areas of interest are also important parts of this process.
The Disney Research paper was presented at the International Conference on 3D Vision; you can read the full thing here.
3D-rendered faces are a big part of any major movie or game now, but the task of capturing and animating them in a natural way can be a tough one. Disney Research is working on ways to smooth out this process, among them a machine learning tool that makes it…
Recent Posts
- Silo season 3: Everything we know so far about the Apple TV Plus show
- The iOS 18.4 beta brings Matter robot vacuum support
- Philips Monitors is now offering a whopping 5-year warranty on some of its displays, including a gorgeous KVM-enabled business monitor
- The secretive X-37B space plane snapped this picture of Earth from orbit
- Beyond 100TB, here’s how Western Digital is betting on heat dot magnetic recording to reach the storage skies
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010