Facial recognition systems are getting better at recognizing masked faces

Facial recognition algorithms are getting better at recognizing faces in masks, according to data published on Tuesday by the National Institute for Standards and Technology (NIST). Drawing on independent testing of more than 150 separate facial recognition algorithms, the new report suggests masks may not be as big a problem for facial recognition systems as initially thought.
Vendors voluntarily submit their facial recognition algorithms to NIST for testing as part of the Facial Recognition Vendor Test (FRVT). The institute publishes results of those tests on a rolling basis as each algorithm is submitted. When NIST first examined masks’ effect on facial recognition in July, it found that algorithms weren’t great at identifying faces with masks. Unsurprisingly, it’s harder to recognize a face when the nose and mouth are covered.
NIST’s reports focus on false non-match rates (FNMR), a measure of how many matching faces slip through the algorithm without triggering an alert. In July, the error rate for some algorithms spiked to between 5 and 50 percent when they were confronted with images of masked people.

But the pandemic has given developers plenty of time to focus on the mask problem, and NIST’s data shows that facial recognition algorithms are getting better at working with masked faces. Without masks, the best algorithms have a false match rate of roughly 0.3 percent — but that number still rises to 5 percent when high-coverage masks are worn.
“While a few pre-pandemic algorithms still remain within the most accurate on masked photos, some developers have submitted algorithms after the pandemic showing significantly improved accuracy and are now among the most accurate in our test,” the report reads.
NIST’s public leaderboard for facial recognition tests bears out this claim. Eight different algorithms now hold false non-match rates below 0.05 percent. Six of those eight were submitted to NIST after the first report was published in July.
The authors note a number of limitations to the study. In particular, while the tests drew on photos of real visa holders and actual border-crossing photos, they did not use actual images of masked faces. For the sake of expediency, NIST researchers instead applied masks digitally to ensure consistency across the sample. As a result, “we were not able to pursue an exhaustive simulation of the endless variations in color, design, shape, texture, bands, and ways masks can be worn,” the report notes. The digital mask was a blue surgical covering the full width of the face, but testers noted that performance varied considerably depending on how high the mask was placed on the face.
The US employs facial recognition at both land and air borders, matching travelers against their visa or passport photos as part of the biometric exit program. The NIST data is drawn from visa holders specifically who have few privacy rights over biometric information collected during the immigration process.
Facial recognition algorithms are getting better at recognizing faces in masks, according to data published on Tuesday by the National Institute for Standards and Technology (NIST). Drawing on independent testing of more than 150 separate facial recognition algorithms, the new report suggests masks may not be as big a problem…
Recent Posts
- FTC Chair praises Justice Thomas as ‘the most important judge of the last 100 years’ for Black History Month
- HP acquires Humane Ai and gives the AI pin a humane death
- DOGE can keep accessing government data for now, judge rules
- Humane’s AI Pin: all the news about the dead AI-powered wearable
- In a test, 2000 people were shown deepfake content, and only two of them managed to get a perfect score
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010