Deep science: AI is in the air, water, soil and steel

Research papers come out far too rapidly for anyone to read them all, especially in the field of machine learning, which now affects (and produces papers in) practically every industry and company. This column aims to collect some of the most relevant recent discoveries and papers — particularly in but not limited to artificial intelligence — and explain why they matter.
This week brings a few unusual applications of or developments in machine learning, as well as a particularly unusual rejection of the method for pandemic-related analysis.
One hardly expects to find machine learning in the domain of government regulation, if only because one assumes federal regulators are hopelessly behind the times when it comes to this sort of thing. So it may surprise you that the U.S. Environmental Protection Agency has partnered with researchers at Stanford to algorithmically root out violators of environmental rules.
When you see the scope of the issue, it makes sense. EPA authorities need to process millions of permits and observations pertaining to Clean Water Act compliance, things such as self-reported amounts of pollutants from various industries and independent reports from labs and field teams. The Stanford-designed process sorted through these to isolate patterns like which types of plants, in which areas, were most likely to affect which demographics. For instance, wastewater treatment in urban peripheries may tend to underreport pollution and put communities of color at risk.
[embedded content]
The very process of reducing the compliance question to something that can be computationally parsed and compared helped clarify the agency’s priorities, showing that while the technique could identify more permit holders with small violations, it may draw attention away from general permit types that act as a fig leaf for multiple large violators.
Another large source of waste and expense is processing scrap metal. Tons of it goes through sorting and recycling centers, where the work is still mostly done by humans, and as you might imagine, it’s a dangerous and dull job. Eversteel is a startup out of the University of Tokyo that aims to automate the process so that a large proportion of the work can be done before human workers even step in.
Eversteel uses a computer vision system to classify incoming scrap into nearly two dozen categories, and to flag impure (i.e., an unrecyclable alloy) or anomalous items for removal. It’s still at an early stage, but the industry isn’t going anywhere, and the lack of any large data set for training their models (they had to make their own, informed by steelworkers and imagery) showed Eversteel that this was indeed virgin territory for AI. With luck, they’ll be able to commercialize their system and attract the funding they need to break into this large but tech-starved industry.
Another unusual but potentially helpful application of computer vision is in soil monitoring, a task every farmer has to do regularly to monitor water and nutrient levels. When they do manage to automate it, it’s done in a rather heavy-handed way. A team from the University of South Australia and Middle Technical University in Baghdad show that the sensors, hardware and thermal cameras used now may be overkill.
Surprisingly, their answer is a standard RGB digital camera, which analyzes the color of the soil to estimate moisture. “We tested it at different distances, times and illumination levels, and the system was very accurate,” said Ali Al-Naji, one of the creators. It could (and is planned to) be used to make a cheap but effective smart irrigation system that could improve crop yield for those who can’t afford industry-standard systems.
Research papers come out far too rapidly for anyone to read them all, especially in the field of machine learning, which now affects (and produces papers in) practically every industry and company. This column aims to collect some of the most relevant recent discoveries and papers — particularly in but…
Recent Posts
- The iOS 18.4 beta brings Matter robot vacuum support
- Philips Monitors is now offering a whopping 5-year warranty on some of its displays, including a gorgeous KVM-enabled business monitor
- The secretive X-37B space plane snapped this picture of Earth from orbit
- Beyond 100TB, here’s how Western Digital is betting on heat dot magnetic recording to reach the storage skies
- The end of an era? TSMC, Broadcom could tear apart Intel’s legendary business after 57 years by separating its foundry and chip design
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010