Data scientists: don’t be afraid to explore new avenues


Ilyes Kacher Contributor
I’m a native French data scientist who cut his teeth as a research engineer in computer vision in Japan and later in my home country. Yet I’m writing from an unlikely computer vision hub: Stuttgart, Germany.
But I’m not working on German car technology, as one would expect. Instead, I found an incredible opportunity mid-pandemic in one of the most unexpected places: An ecommerce-focused, AI-driven, image-editing startup in Stuttgart focused on automating the digital imaging process across all retail products.
My experience in Japan taught me the difficulty of moving to a foreign country for work. In Japan, having a point of entry with a professional network can often be necessary. However, Europe has an advantage here thanks to its many accessible cities. Cities like Paris, London, and Berlin often offer diverse job opportunities while being known as hubs for some specialties.
While there has been an uptick in fully remote jobs thanks to the pandemic, extending the scope of your job search will provide more opportunities that match your interest.
Search for value in unlikely places, like retail
I’m working at the technology spin-off of a luxury retailer, applying my expertise to product images. Approaching it from a data scientist’s point of view, I immediately recognized the value of a novel application for a very large and established industry like retail.
Europe has some of the most storied retail brands in the world — especially for apparel and footwear. That rich experience provides an opportunity to work with billions of products and trillions of dollars in revenue that imaging technology can be applied to. The advantage of retail companies is a constant flow of images to process that provides a playing ground to generate revenue and possibly make an AI company profitable.
Another potential avenue to explore are independent divisions typically within an R&D department. I found a significant number of AI startups working on a segment that isn’t profitable, simply due to the cost of research and the resulting revenue from very niche clients.
Companies with data are companies with revenue potential
I was particularly attracted to this startup because of the potential access to data. Data by itself is quite expensive and a number of companies end up working with a finite set. Look for companies that directly engage at the B2B or B2C level, especially retail or digital platforms that affect front-end user interface.
Leveraging such customer engagement data benefits everyone. You can apply it towards further research and development on other solutions within the category, and your company can then work with other verticals on solving their pain points.
It also means there’s massive potential for revenue gains the more cross-segments of an audience the brand affects. My advice is to look for companies with data already stored in a manageable system for easy access. Such a system will be beneficial for research and development.
The challenge is that many companies haven’t yet introduced such a system, or they don’t have someone with the skills to properly utilize it. If you finding a company isn’t willing to share deep insights during the courtship process or they haven’t implemented it, look at the opportunity to introduce such data-focused offerings.
In Europe, the best bets involve creating automation processes
I have a sweet spot for early-stage companies that give you the opportunity to create processes and core systems. The company I work for was still in its early days when I started, and it was working towards creating scalable technology for a specific industry. The questions that the team was tasked with solving were already being solved, but there were numerous processes that still had to be put into place to solve a myriad of other issues.
Our year-long efforts to automate bulk image editing taught me that as long as the AI you’re building learns to run independently across multiple variables simultaneously (multiple images and workflows), you’re developing a technology that does what established brands haven’t been able to do. In Europe, there are very few companies doing this and they are hungry for talent who can.
So don’t be afraid of a little culture shock and take the leap.
Ilyes Kacher Contributor Ilyes Kacher is a data scientist at autoRetouch, an AI-powered platform for bulk-editing product images online. I’m a native French data scientist who cut his teeth as a research engineer in computer vision in Japan and later in my home country. Yet I’m writing from an unlikely…
Recent Posts
- One of the best AI video generators is now on the iPhone – here’s what you need to know about Pika’s new app
- Apple’s C1 chip could be a big deal for iPhones – here’s why
- Rabbit shows off the AI agent it should have launched with
- Instagram wants you to do more with DMs than just slide into someone else’s
- Nvidia is launching ‘priority access’ to help fans buy RTX 5080 and 5090 FE GPUs
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010