BigEye (formerly Toro) scores $17M Series A to automate data quality monitoring


As companies create machine learning models, the operations team needs to ensure the data used for the model is of sufficient quality, a process that can be time consuming. BigEye (formerly Toro), an early stage startup is helping by automating data quality.
Today the company announced a $17 million Series A led Sequoia Capital with participation from existing investor Costanoa Ventures. That brings the total raised to $21 million with the $4 million seed, the startup raised last May.
When we spoke to BigEye CEO and co-founder Kyle Kirwan last May, he said the seed round was going to be focussed on hiring a team — they are 11 now — and building more automation into the product, and he says they have achieved that goal.
“The product can now automatically tell users what data quality metrics they should collect from their data, so they can point us at a table in Snowflake or Amazon Redshift or whatever and we can analyze that table and recommend the metrics that they should collect from it to monitor the data quality — and we also automated the alerting,” Kirwan explained.
He says that the company is focusing on data operations issues when it comes to inputs to the model such as the table isn’t updating when it’s supposed to, it’s missing rows or there are duplicate entries. They can automate alerts to those kinds of issues and speed up the process of getting model data ready for training and production.
Bogomil Balkansky, the partner at Sequoia who is leading today’s investment sees the company attacking an important part of the machine learning pipeline. “Having spearheaded the data quality team at Uber, Kyle and Egor have a clear vision to provide always-on insight into the quality of data to all businesses,” Balkansky said in a statement.
As the founding team begins building the company, Kirwan says that building a diverse team is a key goal for them and something they are keenly aware of.
“It’s easy to hire a lot of other people that fit a certain mold, and we want to be really careful that we’re doing the extra work to [understand that just because] it’s easy to source people within our network, we need to push and make sure that we’re hiring a team that has different backgrounds and different viewpoints and different types of people on it because that’s how we’re going to build the strongest team,” he said.
BigEye offers on prem and SaaS solutions, and while it’s working with paying customers like Instacart, Crux Informatics, and Lambda School, the product won’t be generally available until later in the year.
As companies create machine learning models, the operations team needs to ensure the data used for the model is of sufficient quality, a process that can be time consuming. BigEye (formerly Toro), an early stage startup is helping by automating data quality. Today the company announced a $17 million Series…
Recent Posts
- Here’s when and where you can preorder the new iPhone 16E
- The Humane AI Pin debacle is a reminder that AI alone doesn’t make a compelling product
- This 1.9-pound smartphone’s massive battery offers six months of standby
- Movie sales – including 4K Blu-ray – fell again last year, but if you’re going streaming only, you’re massively missing out
- A new and dangerous keylogger is on the loose – here’s how to stay safe
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010