Analog AI chip startup wants to achieve 1 POPS per Watt: 1000 TOPS/W is ‘within reach’ says firm co-founder as he looks to analog-first Gigabit-sized SLMs


- Blumind debuts ultra-efficient analog AI chip, achieving 10 nJ/inference
- Targeting wearables, healthcare, automotive, and always-on AI
- Scaling for larger models, aiming for 1000 TOPS/W performance
Blumind, an analog AI chip startup, has showcased a chip designed for low-power applications achieving an impressive 10 nJ per inference, setting the stage for the company’s ambition to scale analog computing to new heights.
The company showed off its test silicon for ultra-efficient keyword spotting chip at Electronica 2024, where co-founder Niraj Mathur told EE Times, “What’s been particularly gratifying is that over the last year, there’s been more pull than us pushing.”
“People have been coming to us specifically asking for analog AI solutions because they believe something new needs to happen.”
1000 TOPS/W is within reach
Blumind has already seen interest from wearable, automotive, and healthcare sectors. One of the examples the company gave was for a tire pressure monitoring system (TPMS) capable of analyzing road conditions.
The customer needed this to offer, “extreme power efficiency because it’s sitting in the tire, it’s got to last the lifetime of the tire, you don’t want to open up the tire to change the battery,” Mathur explained. Another potential use involved detecting heart signals through a pacemaker sensor powered by energy harvested from muscle movement, requiring only a few hundred nanoWatts of power.
The startup’s first product, an analog keyword spotting chip, is set for volume production in 2025. It will be available as both a standalone chip and a chiplet that integrates into microcontroller unit packages. “Chiplets are the other avenue of integration for our customers,” Mathur said in his interview with EE Times. This approach allows Blumind’s technology to complement fully programmable MCUs, focusing on always-on AI tasks.
Looking ahead, Blumind aims to scale its analog architecture for applications requiring much larger models, such as vision CNNs and eventually gigabit-sized small language models (SLMs). Mathur said the company’s goal of achieving 1000 TOPS/W is within reach, emphasizing the potential of analog-first, multi-die solutions.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
Despite his company’s ambitious roadmap, Mathur stressed the importance of a pragmatic approach. “No-one has really brought analog compute to high volume production and delivered on its promise. We want to be the first to do that, but we want to walk before we try and run,” he said.
You might also like
Blumind debuts ultra-efficient analog AI chip, achieving 10 nJ/inference Targeting wearables, healthcare, automotive, and always-on AI Scaling for larger models, aiming for 1000 TOPS/W performance Blumind, an analog AI chip startup, has showcased a chip designed for low-power applications achieving an impressive 10 nJ per inference, setting the stage for…
Recent Posts
- Amazon just overtook Walmart in revenue for the first time
- South of Midnight’s Southern Gothic folklore world is rooted in authenticity
- What to expect at Mobile World Congress 2025: Nothing, Samsung, Xiaomi and more
- The Oppo Find N5 has made me even more excited for the Samsung Galaxy S25 Edge – here’s why
- Apple Intelligence is coming to the Vision Pro
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010