Researchers turn to quantum techniques to boost noise-resistant nanoscale wireless communication between chips — a breakthrough that could revolutionize future tech


As computing shifts from single-chip processors to multi-chip systems, traditional communication methods, such as Network-on-Chip (NoC) and Network-in-Package (NiP), are becoming less efficient. To address these limitations, scientists are exploring terahertz frequencies for high-speed data transfer, despite the challenge of noise interference, which complicates data decoding.
A research team from universities in Australia and the US has been studying wireless communication at the chip level and looking at ways to reduce noise. By applying Floquet engineering, a quantum technique that manipulates electron behavior, they found they were able to improve terahertz signal detection.
When implemented in a two-dimensional semiconductor quantum well (2DSQW), the approach successfully mitigated noise and boosted signal clarity. The team’s findings suggest that this method could pave the way for more effective and reliable wireless communication between chiplets, offering a potential solution for the efficiency challenges faced in multi-chip systems.
Wide-ranging applications
The team also developed a dual-signaling system that uses two receivers to monitor noise levels and adjust signals in real-time, further reducing error rates.
Writing forTech Xplore, researchers Kosala Herath and Malin Premaratne explained, “By overcoming the challenges of noise and signal degradation, our dual-signaling technique marks a key advancement in developing high-speed, noise-resistant wireless communication for chiplets. This innovation brings us closer to creating more efficient, scalable, and adaptable computing systems for the technologies of tomorrow.”
Their findings were published in the IEEE Journal on Selected Areas in Communications.
As we previously reported, universities are also looking at ways of boosting the potential of terahertz technology in order to unlock bandwidth for future telecommunications.
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
The University of Adelaide has developed a polarization multiplexer that doubles data transmission capacity at terahertz frequencies, while researchers at the University of Notre Dame showcased a silicon topological beamformer chip capable of splitting a single terahertz signal into 54 smaller beams.
More from TechRadar Pro
As computing shifts from single-chip processors to multi-chip systems, traditional communication methods, such as Network-on-Chip (NoC) and Network-in-Package (NiP), are becoming less efficient. To address these limitations, scientists are exploring terahertz frequencies for high-speed data transfer, despite the challenge of noise interference, which complicates data decoding. A research team from…
Recent Posts
- Nickelodeon’s next Avatar animated series is finally coming together
- Hackers are targeting Signal with new QR code-linked cyberattack
- DJI’s RS 4 Mini camera stabilizer can now track moving people
- OnePlus seeks FDA approval for Sleep Apnea Detection on its watch and takes on Apple in the process
- Dune: Awakening will spice things up on May 20
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010