Quantum computing breakthrough may help us learn about the earliest moments of the universe


The latest breakthrough in the field of quantum computing could pave the way for complex simulations that tell us about the earliest moments of the universe and more.
A team of researchers from the University of Waterloo, Canada, claims to have performed the first ever simulation of baryons (a highly complex type of subatomic particle) on a quantum computer.
To achieve this goal, the researchers paired a traditional computer with a quantum machine in the cloud, and developed from scratch a quantum algorithm that was resource-efficient enough to allow the system to shoulder the workload.
Until now, computers have only been able to simulate the composite elements of baryons (which are made up of three quarks), but the research paper shows it’s possible to perform detailed quantum simulations with many baryons.
Although the science is complex, the broad significance is this: scientists will be able to simulate aspects of physics completely out of reach for traditional supercomputers.
Complex quantum simulations
According to the researchers, the breakthrough represents a landmark step towards overcoming the limitations of classical computing and allowing the massive potential of quantum computers to be realized.
“This is an important step forward – it is the first simulation of baryone on a quantum computer ever,” said Christine Muschik, faculty member at the Institute for Quantum Computing (IQC). “Instead of smashing particles in an accelerator, a quantum computer may one day allow us to simulate these interactions that we use to study the origins of the universe and so much more.”
More specifically, researchers will be able to simulate complex lattice gauge theories, which describe the physics of reality. So-called non-Abelian gauge theories are said to be particularly attractive candidates for quantum simulation, as they relate to the stability of matter in the universe.
While the most powerful traditional computers are able to simulate simple non-Abelian gauge theories, only a quantum computer (as has now been proven) can perform the complex simulations necessary to unpack the inner workings of the universe.
“What’s exciting about these results for us is that the theory can be made so much more complicated, added Jinglei Zhang, another researcher at the IQC. “We can consider simulating matter at higher densities, which is beyond the capability of classical computers.”
The latest breakthrough in the field of quantum computing could pave the way for complex simulations that tell us about the earliest moments of the universe and more. A team of researchers from the University of Waterloo, Canada, claims to have performed the first ever simulation of baryons (a highly…
Recent Posts
- Andor is on the offensive in latest season 2 trailer
- Apple’s latest iOS update improves CarPlay, but not everyone will be able to access it
- Google is replacing Gmail’s SMS authentication with QR codes
- A new era for VPN testing? ATMSO publishes the first-ever testing standards in an “important milestone”
- 10 Best Laptop Stands for Any Setup, Tested and Reviewed (2025)
Archives
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- September 2018
- October 2017
- December 2011
- August 2010